
1

Bee Balanced
Software Testing Plan

Version 1.0

Team Members:
Meaghan Freund
Patricia Madrid

Javier Arribas Gonzales
Gannon Rowlan

Mentor:

Scott LaRocca

2

Table of Contents

1 Introduction ……………………………………………………………………………………..3

2 Unit Testing ...…………...………………………………………………………………………4

 2.1 Units to be Tested……………….……………………………..…….………………...4

 2.2 How We Are Testing….……..…………………………….…..…….………………...5

3 Integration Testing…..………………………………………………………………………….6

 3.1 Modules to be Tested………………………………………....…….………………....6

 3.2 How We Are Testing………………………………………....…….……………….....7

4 Usability/End-user Testing ……………………………………………………………………...8

 4.1 Considerations for Usability Testing……………………………………………….....8

 4.2 Usability Testing Plan…………………………………………………………………9

 4.3 Timeline for Usability Testing……………………………………………………….10

5 Conclusion …………………………………………………………………………………….11

3

1 Introduction

Bee Balanced is a personalized web application designed to help adolescents build
lifelong healthy habits by improving their physical, mental, and social well-being. Through daily
health surveys, gamified tracking features like badges and virtual pets, and personalized wellness
feedback, the platform aims to keep users engaged and motivated. The system is built using a
modern tech stack including React.js, Node.js, Express, MySQL, and AWS, with a strong focus
on usability, scalability, and data privacy.

In software engineering, testing plays a crucial role in ensuring the quality, functionality,
and usability of an application. It allows developers to validate that the system behaves as
expected, uncover bugs before deployment, and ensure that changes do not introduce new issues.
A well-structured testing strategy improves reliability, enhances user experience, and ensures
long-term maintainability.

For Bee Balanced, our testing plan includes Unit Testing, Integration Testing, and
Usability/End-user Testing. Unit testing will focus on validating individual functions like user
authentication, data handling, and survey logic using tools such as Mocha, Chai, and Supertest.
Integration testing will verify that components like the backend, database, and frontend
communicate correctly. Usability testing will ensure that teens, our target audience , can interact
with the platform easily and intuitively, using expert reviews, small-group studies, and feedback
loops.

The rationale for this specific testing approach stems from the nature of our web
application: it's highly interactive, user-centered, and data-driven. Because our target users are
adolescents who may quickly disengage with poorly functioning or unintuitive tools, extra care is
placed on usability testing. Likewise, since our website handles sensitive wellness data,
integration testing is essential to ensure correct and secure data flow between modules. Finally,
unit testing helps us maintain code quality and reduce errors at the source. The following
sections outline each testing type in more detail, including the tools, techniques, and rationale
behind the specific test cases designed for Bee Balanced.

4

2 Unit Testing
 Unit testing helps us make sure that the different components of Bee Balanced work
correctly on their own before they are combined into the full system. Our goal is to test important
functions like user login, handling user data, and giving health recommendations. This helps
catch errors early and makes the app easier to maintain. Bee Balanced is built using Node.js and
MySQL for the backend, with express, HTML and CSS for the frontend. To test our code, we
will use Mocha/Chai for the backend and frontend, and we will use Supertest for server and API
testing.

2.1 Units to be Tested

Unit testing will check different parts of the app to confirm they work properly. Here are
the key areas:

2.1.1 Authentication (Logging In and Signing Up): The authentication system lets users sign up,
log in, and stay logged in securely. Tests will check:

● Users can create accounts.
● Logins work with correct credentials and fail with wrong ones.
● Passwords are stored and handled securely.
● Sessions and tokens work properly.

2.1.2 User Profiles: Users can create and manage their profiles, including personal health data.
Tests will check:

● Profiles can be created, edited, viewed, and deleted.
● Invalid input is rejected.
● Changes to profiles are correctly saved.

2.1.3 Surveys: Users fill out surveys that help generate health recommendations. Tests will
check:

● Survey responses are saved correctly.
● The point system for questions is accurate.
● Users can view past survey results.

2.1.4 Feedback: The system gives users personalized health suggestions. Tests will check:

● Recommendations match user data.
● New users without much data get general suggestions.
● Errors don’t break the recommendation system.

5

2.1.5 API Endpoints: The app uses APIs to send and receive data. Tests will check:

● APIs return the correct data.
● Errors are handled properly.
● Responses follow the expected format.

2.2 How We Are Testing

 To make sure our tests actually catch problems, we’re going to check if the app works
under normal conditions, as well as in situations where things could go wrong. This means
testing with both expected and unexpected inputs to see if the system responds correctly and
doesn’t crash.

2.2.1 Authentication Testing

 We will test the signup and login features by creating new accounts and making sure they
get stored properly. If someone tries to sign up with an email that’s already taken, the system
should block it. We’ll also test logging in with both correct and incorrect passwords to make sure
only real users get in. Another important thing to check is how session tokens work—users
should stay logged in securely, but if a token is expired or invalid, the system should prevent
access.

2.2.2 User Profiles

 User profiles are a big part of the app, so we need to make sure they can be created,
updated, viewed, and deleted without any problems. We’ll test if the system saves changes
properly when a user updates their profile. If someone tries to enter invalid information—like
leaving out required fields or entering text where numbers should go—the system should catch
that and reject it. We’ll also test deleting profiles to make sure all user data is removed correctly.

2.2.3 Surveys

 Since surveys are key to personalizing the app experience, we’ll run tests to make sure
responses are saved properly in the database and linked to the right user. If a user tries to submit
an incomplete survey, the system should stop them from doing so. We’ll also test whether past
survey results are stored and displayed correctly when users go back to check them.

2.2.4 Feedback

 The app gives health recommendations based on what users enter in their profiles and
surveys, so we need to make sure those suggestions make sense. If a new user doesn’t have much
data yet, they should get general recommendations. If a user has completed surveys, their

6

recommendations should be personalized based on their responses. We’ll also introduce missing
or inconsistent data to see if the system can still function correctly without breaking.

2.2.5 API Endpoints

 The app relies on APIs to send and receive data, so we’ll test if the APIs return the right
information when given correct requests. If a request is wrong or missing something important,
the system should send an error message instead of just failing silently. We’ll also check that the
responses follow the expected format so that everything works smoothly between the frontend
and backend.

3 Integration Testing

Integration testing itself is a form of testing the interactions and data exchanges between major
components, ensuring the correct information is passed through module to module. In short, the
goal of integration testing is to validate whether parameters and return values are accurate to
what the user is expecting, guaranteeing a reliable application that provides predictable results.
For the Bee Balanced project, the overall approach procedure in determining what to test was
considering each component of the application, such as the user account, the surveys, and the
progress tracking and how they exchange data between each other. In order to test that the
correct data is being transferred between each module, the team will conduct integration testing
through database checks and unit tests to ensure that the expected results are produced when
moving through each component.

3.1 Modules to be Tested

The architecture of Bee Balanced as an application is very interconnected, weaving every
module together to create a cohesive structure. To accurately complete the integration testing
phase of software development, the following major relationships between components need to
be assessed:

3.1.1 Sign Up to Login: Users are able to create a new account and can immediately log in using
that account information.

3.1.2 Login to Home Page: After a user logs into their account, their personalized data is
presented in the home page.

3.1.3 Saving Survey Results: A user can take a daily survey and expect to have the accurate
results stored to their account.

3.1.4 Progress Page: An accurate representation of the user’s results history is displayed on the
home page.

7

3.1.5 Relevant Feedback: Feedback that is applicable to the user is displayed, taking the results
and history of the surveys into account.

3.1.6 Survey to Games Transaction: Once a user takes one survey, they can expect to have a mini
game unlocked and ready to play.

3.2 How We Are Testing

3.2.1 Sign Up to Login

 For the sign up to log in process, we will need to ensure that a user is able to sign up with
a specified email and password and can successfully log in using the exact same information. To
test this, we will create new accounts and monitor the database to match the newest user addition
to the account we entered. Next, we will move to the login page and test incorrect emails and
passwords that are similar to the newly created account, establishing a secure system that
requires exact authentication. Finally, we will properly sign into the correct account, verifying a
correct transition from log in to home page, where we will conduct our next tests.

3.2.2 Login to Home Page

 Following the creation of a new account and logging in, we need to certify that the
account that is entered holds the expected existing information. We will need at least two
accounts to experiment with, one that has a history with actual information and one that has been
newly created with zero expected held data. First, we will test with the new account that we
created, examining the home page to ensure that there are default values with no current data,
checking the account page to confirm that the login credentials are accurate, and looking through
the database and verifying that there is no history in the survey table. Moving forward, we will
use an account that has been filled with survey results, checking the same measures that were
conducted with the empty account. Instead, we will expect a filled home page with progress and
held results from previous surveys. As a team, we need to guarantee that the history for a user is
what they are expecting to see to provide a complete experience with the website.

3.2.3 Saving Survey Results

 After ensuring that the previous entries are to be expected, we will need to confirm that
new entries are saved and returned to the user’s account. Any account can be used to test here,
but for consistency, we will use the fresh account we have created previously. Each of the
surveys will be completed to test this transaction, making sure that all are properly integrated
with the system. Following completion of each survey, we will match the recorded results with
the database, certifying that the correct results have been stored. The next operation for testing
will be confirmed with the progress page phase of integration testing, as monitoring survey
results heavily ties into the progress section.

8

3.2.4 Progress Page

 Succeeding the completion of the survey results, we will verify that the progression page
is updated with the new entry of survey data. After matching the results with the database, we
will ensure that the data is being passed to the progress graphics. Visually, we will calculate the
new average for the survey point and confirm that the new added point is equal to the expected
average.

3.2.5 Relevant Feedback

 Following the progress page is the feedback section, which takes into account the existing
progress history and translates this into a written report on how to improve any relevant areas of
health. We will need to track the most recent entry of survey data and note which health habits
have a lower average score in comparison to the others. Then, we will need to test the database
and verify that the lowest points have been recorded and saved to be reported to the user. Finally,
we will check each health category of feedback, which are overall, mental, and physical, and
match if the expected habits are being reported on and give relevant advice to the user. The goal
of Bee Balanced is to help users improve upon these results, making this section imperative to
test accurate data exchange.

3.2.6 Survey to Games Transaction

 Finally, we need to ensure that the survey is connected to the games section, allowing
users to play a mini game once they complete a survey. We will test this by checking the
accessibility of the mini games before taking a survey, checking if they are still locked to the
user. Next, we will complete a survey and check if the status of the game has changed to be
unlocked for the user. We will test this for each survey, confirming that each type of survey
completed allows the user to access a mini game as expected.

4 Usability/End-user Testing

Usability testing is a critical phase in software development that evaluates how easily and
effectively end-users can interact with an application. The primary goal of usability testing is to
ensure that the software system provides a smooth and intuitive user experience, minimizing
confusion and frustration while maximizing user satisfaction. Usability testing assesses the
clarity, efficiency, and accessibility of the system’s interface and workflow, identifying potential
areas for improvement before full deployment.

Usability testing typically involves real users interacting with the system under controlled
conditions while researchers observe and analyze their experiences. This process helps uncover
usability issues, such as confusing navigation, unclear instructions, or inefficient workflows. The
results inform design refinements that enhance overall user satisfaction and engagement.

9

4.1 Considerations for Usability Testing

Bee Balanced is a survey-based web application designed to help users track and improve their
well-being. Given the nature of our user base, which are individuals looking for health insights
who may not be tech-savvy, it is crucial to ensure that the interface is highly intuitive and
responsive. The usability testing plan for Bee Balanced considers the following factors:

4.1.1 User Demographics

The application will cater to a broad audience, including users with varying levels of technical
proficiency. Testing should include users with minimal technical background to ensure
accessibility.

4.1.2 Survey Engagement

Since the core functionality revolves around users completing surveys, it is essential to verify
that the process is straightforward, visually appealing, and engaging.

4.1.3 Data Interpretation

Users should be able to easily comprehend their results and insights, including visual data
representations using Plotly.js.

4.1.4 Interactivity and Gamification

The virtual pet and mini-games integrated into Bee Balanced should enhance user engagement
rather than serve as a distraction or cause confusion.

Based on these considerations, our usability testing will focus on identifying friction points in the
user journey, refining the interface, and ensuring a user-friendly experience.

4.2 Usability Testing Plan

The usability testing plan consists of three main components: expert reviews, user studies, and
acceptance testing. These methods will provide both qualitative and quantitative insights into the
effectiveness of Bee Balanced user interface and workflow.

4.2.1 Expert Reviews

Objective: Gather feedback from usability experts to identify potential design and interaction
issues before testing with real users.

● Who: Usability specialists, UI/UX designers, and accessibility experts.

10

● What: Experts will review the Bee Balanced interface for clarity, ease of navigation, and
adherence to usability best practices.

● How Often: Conducted once before user testing, with follow-up evaluations if major
changes are made.

● Recording & Analysis: Findings will be documented, categorized, and prioritized for
implementation based on severity and impact.

4.2.2 User Studies

Objective: Observe real users as they interact with Bee Balanced to identify usability bottlenecks
and areas of confusion.

● Who: A diverse group of 15-20 users reflecting our target audience.
● What: Users will complete a set of tasks, such as signing up, completing a survey,

reviewing results, and interacting with the gamified elements.
● How Often: Conducted in two rounds—an initial study before major refinements and a

follow-up study after implementing improvements.
● Recording & Analysis: Sessions will be recorded (with user consent) and analyzed for

navigation errors, completion times, and user feedback. Heatmaps and interaction
tracking may be used for additional insights.

4.2.3 Acceptance Testing

Objective: Validate that usability requirements have been met before the official launch.

● Who: A final group of users, including some from prior user studies and new participants.
● What: Users will complete a final usability test to ensure all improvements have

addressed initial concerns and no new issues have emerged.
● How Often: One round conducted near the end of development.
● Recording & Analysis: Surveys and structured interviews will collect feedback on ease of

use, overall satisfaction, and remaining concerns.

4.3 Timeline for Usability Testing

Phase Activity Duration Expected Completion

Expert Review UI/UX Analysis 1 week Week 1

User Study - Round 1 Initial user testing 1 week Week 2

Refinements Implement
Improvements

1 week Week 3

11

User Study - Round 2 Follow-up testing 1 week Week 4

Acceptance Testing Final validation 1 week Week 5

Usability testing is essential for ensuring that Bee Balanced provides a seamless and engaging
experience for its users. Through expert reviews, real user studies, and acceptance testing, we
will iteratively refine the platform to maximize usability and satisfaction. By carefully analyzing
user interactions and feedback, we aim to deliver an intuitive and accessible system that
encourages long-term engagement and positive health outcomes.

5 Conclusion

 The Bee Balanced software test plan outlines a comprehensive approach to ensuring that our web
application functions correctly, integrates seamlessly, and provides a smooth and intuitive experience for
our users. Through detailed unit testing, we will verify that individual components such as authentication,
user profiles, surveys, and API endpoints work as intended. Our integration testing strategy focuses on
confirming that these components interact properly, particularly in the areas of user onboarding, data
tracking, and personalized feedback delivery.

 In addition, we have prioritized usability testing to ensure that adolescents, our primary user base,
can easily navigate and engage with the platform. By conducting expert reviews, user studies, and
acceptance testing, we aim to identify and fix pain points in the user experience before full deployment.ç

 This well-rounded testing regime is tailored to the nature of Bee Balanced as a health-focused,
interactive, and data-driven application. With an emphasis on usability, reliability, and secure data
handling, our testing plan is designed to deliver a polished, error-resistant, and engaging product. We are
confident that following this plan will result in a high-quality application that meets user needs and
supports positive, long-term health habits.

	5 Conclusion

